Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 481
Filtrar
1.
IEEE Trans Biomed Eng ; PP2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530718

RESUMEN

Magnetic resonance elastography (MRE) of brain relies on inducing and measuring shear waves in the brain. However, studies have shown vibration could induce changes in cerebral blood flow (CBF), which has a modulation effect and can affect the biomechanical properties measured. OBJECTIVE: This work demonstrates the initial prototype of the indirect excitation method, which can generate shear waves in the brain with minimal changes in CBF. METHODS: A simple system was designed to produce stable vibrations underneath the neck. Instead of directly stimulating the skull, shear waves were indirectly transmitted to the brain through the spine and brainstem. RESULTS: Phantom results showed that the proposed actuator did not interfere with the routine imaging sequence and successfully generated multifrequency shear waves. When compared with the conventional direct head stimulation method, brain MRE results from the proposed actuator showed no significant differences in terms of intraclass correlation coefficients (ICC) and coefficients of variation (CV). Moreover, the octahedral shear strain (OSS) generated by the indirect excitation in the frontal and parietal lobes decreased by 25.96% and 16.73% respectively. Evaluation of CBF in healthy volunteers revealed no significant changes for the indirect excitation method, whereas significant decreases in CBF were observed in four subregions when employing direct excitation. CONCLUSION: The proposed actuator offers a more accurate and comfortable approach to MRE measurements while causing minimal CBF alterations. SIGNIFICANCE: This work presents the first demonstration of an indirect excitation brain MRE system that minimizes CBF changes, thus holding potential for future applications of brain MRE.

2.
J Magn Reson Imaging ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38449389

RESUMEN

BACKGROUND: Different MR elastography (MRE) systems may produce different stiffness measurements, making direct comparison difficult in multi-center investigations. PURPOSE: To assess the repeatability and reproducibility of liver stiffness measured by three typical MRE systems. STUDY TYPE: Prospective. POPULATION/PHANTOMS: Thirty volunteers without liver disease history (20 males, aged 21-28)/5 gel phantoms. FIELD STRENGTH/SEQUENCE: 3.0 T United Imaging Healthcare (UIH), 1.5 T Siemens Healthcare, 3.0 T General Electric Healthcare (GE)/Echo planar imaging-based MRE sequence. ASSESSMENT: Wave images of volunteers and phantoms were acquired by three MRE systems. Tissue stiffness was evaluated by two observers, while phantom stiffness was assessed automatically by code. The reproducibility across three MRE systems was quantified based on the mean stiffness of each volunteer and phantom. STATISTICAL TESTS: Intraclass correlation coefficients (ICC), coefficients of variation (CV), and Bland-Altman analyses were used to assess the interobserver reproducibility, the interscan repeatability, and the intersystem reproducibility. Paired t-tests were performed to assess the interobserver and interscan variation. Friedman tests with Dunn's multiple comparison correction were performed to assess the intersystem variation. P values less than 0.05 indicated significant difference. RESULTS: The reproducibility of stiffness measured by the two observers demonstrated consistency with ICC > 0.92, CV < 4.32%, Mean bias < 2.23%, and P > 0.06. The repeatability of measurements obtained using the electromagnetic system for the liver revealed ICC > 0.96, CV < 3.86%, Mean bias < 0.19%, P > 0.90. When considering the range of reproducibility across the three systems for liver evaluations, results ranged with ICCs from 0.70 to 0.87, CVs from 6.46% to 10.99%, and Mean biases between 1.89% and 6.30%. Phantom studies showed similar results. The values of measured stiffness differed across all three systems significantly. DATA CONCLUSION: Liver stiffness values measured from different MRE systems can be different, but the measurements across the three MRE systems produced consistent results with excellent reproducibility. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.

3.
Sci Robot ; 9(87): eadh2479, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38381840

RESUMEN

Cerebral aneurysms and brain tumors are leading life-threatening diseases worldwide. By deliberately occluding the target lesion to reduce the blood supply, embolization has been widely used clinically to treat cerebral aneurysms and brain tumors. Conventional embolization is usually performed by threading a catheter through blood vessels to the target lesion, which is often limited by the poor steerability of the catheter in complex neurovascular networks, especially in submillimeter regions. Here, we propose magnetic soft microfiberbots with high steerability, reliable maneuverability, and multimodal shape reconfigurability to perform robotic embolization in submillimeter regions via a remote, untethered, and magnetically controllable manner. Magnetic soft microfiberbots were fabricated by thermal drawing magnetic soft composite into microfibers, followed by magnetizing and molding procedures to endow a helical magnetic polarity. By controlling magnetic fields, magnetic soft microfiberbots exhibit reversible elongated/aggregated shape morphing and helical propulsion in flow conditions, allowing for controllable navigation through complex vasculature and robotic embolization in submillimeter regions. We performed in vitro embolization of aneurysm and tumor in neurovascular phantoms and in vivo embolization of a rabbit femoral artery model under real-time fluoroscopy. These studies demonstrate the potential clinical value of our work, paving the way for a robotic embolization scheme in robotic settings.


Asunto(s)
Neoplasias Encefálicas , Aneurisma Intracraneal , Procedimientos Quirúrgicos Robotizados , Robótica , Animales , Conejos , Procedimientos Quirúrgicos Robotizados/métodos , Aneurisma Intracraneal/terapia , Fenómenos Magnéticos
4.
Innovation (Camb) ; 5(1): 100548, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38161522

RESUMEN

Drug delivery to the brain is crucial in the treatment for central nervous system disorders. While significant progress has been made in recent years, there are still major challenges in achieving controllable drug delivery to the brain. Unmet clinical needs arise from various factors, including controlled drug transport, handling large drug doses, methods for crossing biological barriers, the use of imaging guidance, and effective models for analyzing drug delivery. Recent advances in micro/nanosystems have shown promise in addressing some of these challenges. These include the utilization of microfluidic platforms to test and validate the drug delivery process in a controlled and biomimetic setting, the development of novel micro/nanocarriers for large drug loads across the blood-brain barrier, and the implementation of micro-intervention systems for delivering drugs through intraparenchymal or peripheral routes. In this article, we present a review of the latest developments in micro/nanosystems for controllable drug delivery to the brain. We also delve into the relevant diseases, biological barriers, and conventional methods. In addition, we discuss future prospects and the development of emerging robotic micro/nanosystems equipped with directed transportation, real-time image guidance, and closed-loop control.

5.
Sci Adv ; 10(3): eadj1984, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38241380

RESUMEN

Precise manipulation of flexible surgical tools is crucial in minimally invasive surgical procedures, necessitating a miniature and flexible robotic probe that can precisely direct the surgical instruments. In this work, we developed a polymer-based robotic fiber with a thermal actuation mechanism by local heating along the sides of a single fiber. The fiber robot was fabricated by highly scalable fiber drawing technology using common low-cost materials. This low-profile (below 2 millimeters in diameter) robotic fiber exhibits remarkable motion precision (below 50 micrometers) and repeatability. We developed control algorithms coupling the robot with endoscopic instruments, demonstrating high-resolution in situ molecular and morphological tissue mapping. We assess its practicality and safety during in vivo laparoscopic surgery on a porcine model. High-precision motion of the fiber robot delivered endoscopically facilitates the effective use of cellular-level intraoperative tissue identification and ablation technologies, potentially enabling precise removal of cancer in challenging surgical sites.


Asunto(s)
Laparoscopía , Procedimientos Quirúrgicos Robotizados , Robótica , Porcinos , Animales , Procedimientos Quirúrgicos Robotizados/métodos , Laparoscopía/métodos , Procedimientos Quirúrgicos Mínimamente Invasivos
6.
ACS Omega ; 9(3): 3942-3949, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38284073

RESUMEN

One previously undescribed naphthoquinone-benzisochromanquinone dimer berpolydiquinone A (1), along with two previously undescribed naphthoquinone-anthraquinone dimers berpolydiquinones B and C (2-3), and one previously undescribed dimeric naphthalene berpolydinaphthalene A (4), were isolated from the stems and leaves of Berchemia polyphylla var. leioclada. The chemical structures of these compounds were determined using high-resolution electrospray ionization mass spectroscopy (HR-ESI-MS), spectroscopic data, the exciton chirality method (ECM), and quantum chemical calculation. Notably, compounds (1-2 and 5) are dimeric quinones that share the same naphthoquinone moiety, specifically identified as 2-methoxystypandron. Compound (4) is a derivative of dimeric naphthalene with a symmetrical structure, which is a new structure type isolated from B. polyphylla var. leioclada for the first time. These findings suggest that B. polyphylla var. leioclada serves as a significant reservoir of structurally diverse phenolic compounds. This study provides a scientific foundation for regarding B. polyphylla var. leioclada as a potential source of "Tiebaojin".

7.
IEEE Rev Biomed Eng ; 17: 42-62, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37471188

RESUMEN

The integration of machine/deep learning and sensing technologies is transforming healthcare and medical practice. However, inherent limitations in healthcare data, namely scarcity, quality, and heterogeneity, hinder the effectiveness of supervised learning techniques which are mainly based on pure statistical fitting between data and labels. In this article, we first identify the challenges present in machine learning for pervasive healthcare and we then review the current trends beyond fully supervised learning that are developed to address these three issues. Rooted in the inherent drawbacks of empirical risk minimization that underpins pure fully supervised learning, this survey summarizes seven key lines of learning strategies, to promote the generalization performance for real-world deployment. In addition, we point out several directions that are emerging and promising in this area, to develop data-efficient, scalable, and trustworthy computational models, and to leverage multi-modality and multi-source sensing informatics, for pervasive healthcare.


Asunto(s)
Aprendizaje Automático , Tecnología , Humanos , Aprendizaje Automático Supervisado
8.
IEEE J Biomed Health Inform ; 28(2): 765-776, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38010934

RESUMEN

Motor Imagery (MI) Electroencephalography (EEG) is one of the most common Brain-Computer Interface (BCI) paradigms that has been widely used in neural rehabilitation and gaming. Although considerable research efforts have been dedicated to developing MI EEG classification algorithms, they are mostly limited in handling scenarios where the training and testing data are not from the same subject or session. Such poor generalization capability significantly limits the realization of BCI in real-world applications. In this paper, we proposed a novel framework to disentangle the representation of raw EEG data into three components, subject/session-specific, MI-task-specific, and random noises, so that the subject/session-specific feature extends the generalization capability of the system. This is realized by a joint discriminative and generative framework, supported by a series of fundamental training losses and training strategies. We evaluated our framework on three public MI EEG datasets, and detailed experimental results show that our method can achieve superior performance by a large margin compared to current state-of-the-art benchmark algorithms.


Asunto(s)
Interfaces Cerebro-Computador , Humanos , Electroencefalografía/métodos , Algoritmos , Benchmarking , Imaginación
9.
Nat Commun ; 14(1): 8257, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38086851

RESUMEN

Accurate navigation and targeting are critical for neurological interventions including biopsy and deep brain stimulation. Real-time image guidance further improves surgical planning and MRI is ideally suited for both pre- and intra-operative imaging. However, balancing spatial and temporal resolution is a major challenge for real-time interventional MRI (i-MRI). Here, we proposed a deep unrolled neural network, dubbed as LSFP-Net, for real-time i-MRI reconstruction. By integrating LSFP-Net and a custom-designed, MR-compatible interventional device into a 3 T MRI scanner, a real-time MRI-guided brain intervention system is proposed. The performance of the system was evaluated using phantom and cadaver studies. 2D/3D real-time i-MRI was achieved with temporal resolutions of 80/732.8 ms, latencies of 0.4/3.66 s including data communication, processing and reconstruction time, and in-plane spatial resolution of 1 × 1 mm2. The results demonstrated that the proposed method enables real-time monitoring of the remote-controlled brain intervention, and showed the potential to be readily integrated into diagnostic scanners for image-guided neurosurgery.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Biopsia , Procedimientos Neuroquirúrgicos , Redes Neurales de la Computación , Procesamiento de Imagen Asistido por Computador/métodos
10.
Nat Prod Res ; : 1-7, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38088054

RESUMEN

Three new anthraquinone-benzisochromanquinone dimers polyphylldiquinones A-C (1-3), along with three known analogs floribundiquinone A-B (4-5) and 7-dehydroxyventiloquinone H (6), were isolated from the stems and leaves of Berchemia polyphylla. The chemical structures and absolute configurations of these compounds were determined using HR-ESI-MS, spectroscopic data, and electronic circular dichroism. Notably, compounds (1-5) are dimeric quinones that share the same benzisochromanquinone moiety, specifically identified as 7-dehydroxyventiloquinone H (6), which was the first time to report as a natural product. Compounds 1-2 and compounds 4-5 are two pairs of atropisomers respectively.

11.
Front Pharmacol ; 14: 1275041, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37908974

RESUMEN

Triterpenoid saponins from Stauntonia chinensis have been proven to be a potential candidate for inflammatory pain relief. Our pharmacological studies confirmed that the analgesic role of triterpenoid saponins from S. chinensis occurred via a particular increase in the inhibitory synaptic response in the cortex at resting state and the modulation of the capsaicin receptor. However, its analgesic active components and whether its analgesic mechanism are limited to this are not clear. In order to further determine its active components and analgesic mechanism, we used the patch clamp technique to screen the chemical components that can increase inhibitory synaptic response and antagonize transient receptor potential vanilloid 1, and then used in vivo animal experiments to evaluate the analgesic effect of the selected chemical components. Finally, we used the patch clamp technique and molecular biology technology to study the analgesic mechanism of the selected chemical components. The results showed that triterpenoid saponins from S. chinensis could enhance the inhibitory synaptic effect and antagonize the transient receptor potential vanilloid 1 through different chemical components, and produce central and peripheral analgesic effects. The above results fully reflect that "traditional Chinese medicine has multi-component, multi-target, and multi-channel synergistic regulation".

12.
Med Image Anal ; 90: 102957, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37716199

RESUMEN

Open international challenges are becoming the de facto standard for assessing computer vision and image analysis algorithms. In recent years, new methods have extended the reach of pulmonary airway segmentation that is closer to the limit of image resolution. Since EXACT'09 pulmonary airway segmentation, limited effort has been directed to the quantitative comparison of newly emerged algorithms driven by the maturity of deep learning based approaches and extensive clinical efforts for resolving finer details of distal airways for early intervention of pulmonary diseases. Thus far, public annotated datasets are extremely limited, hindering the development of data-driven methods and detailed performance evaluation of new algorithms. To provide a benchmark for the medical imaging community, we organized the Multi-site, Multi-domain Airway Tree Modeling (ATM'22), which was held as an official challenge event during the MICCAI 2022 conference. ATM'22 provides large-scale CT scans with detailed pulmonary airway annotation, including 500 CT scans (300 for training, 50 for validation, and 150 for testing). The dataset was collected from different sites and it further included a portion of noisy COVID-19 CTs with ground-glass opacity and consolidation. Twenty-three teams participated in the entire phase of the challenge and the algorithms for the top ten teams are reviewed in this paper. Both quantitative and qualitative results revealed that deep learning models embedded with the topological continuity enhancement achieved superior performance in general. ATM'22 challenge holds as an open-call design, the training data and the gold standard evaluation are available upon successful registration via its homepage (https://atm22.grand-challenge.org/).


Asunto(s)
Enfermedades Pulmonares , Árboles , Humanos , Tomografía Computarizada por Rayos X/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Pulmón/diagnóstico por imagen
13.
ACS Omega ; 8(33): 30747-30756, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37636964

RESUMEN

Garbractin A (1), a structurally complicated polycyclic polyprenylated acylphloroglucinol (PPAP) with an unprecedented 4,11-dioxatricyclo[4.4.2.01,5] dodecane skeleton, was isolated from the fruits of Garcinia bracteata, along with five new biosynthetic analogues named garcibracteatones A-E (2-6). Their structures containing absolute configurations were revealed using spectroscopic data, the residual dipolar coupling-enhanced NMR approach, and quantum chemical calculations. The antihyperglycemic effect of these PPAPs (1-6) was evaluated using insulin-resistant HepG2 cells (IR-HepG2 cells) induced through palmitic acid (PA). Compounds 1, 3, and 4 were found to significantly promote glucose consumption in the IR-HepG2 cells and, therefore, may hold potential as candidates for treating hyperglycemia.

15.
Front Robot AI ; 10: 1211876, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37377630

RESUMEN

Master-Slave control is a common mode of operation for surgical robots as it ensures that surgeons are always in control and responsible for the procedure. Most teleoperated surgical systems use low degree-of-freedom (DOF) instruments, thus facilitating direct mapping of manipulator position to the instrument pose and tip location (tip-to-tip mapping). However, with the introduction of continuum and snake-like robots with much higher DOF supported by their inherent redundant architecture for navigating through curved anatomical pathways, there is a need for developing effective kinematic methods that can actuate all the joints in a controlled fashion. This paper introduces the concept of navigation with Minimal Occupation VolumE (MOVE), a teleoperation method that extends the concept of follow-the-leader navigation. It defines the path taken by the head while using all the available space surrounding the robot constrained by individual joint limits. The method was developed for the i 2 Snake robot and validated with detailed simulation and control experiments. The results validate key performance indices such as path following, body weights, path weights, fault tolerance and conservative motion. The MOVE solver can run in real-time on a standard computer at frequencies greater than 1 kHz.

16.
IEEE J Biomed Health Inform ; 27(8): 3994-4005, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37171919

RESUMEN

Endomicroscopy is an emerging imaging modality for real-time optical biopsy. One limitation of existing endomicroscopy based on coherent fibre bundles is that the image resolution is intrinsically limited by the number of fibres that can be practically integrated within the small imaging probe. To improve the image resolution, Super-Resolution (SR) techniques combined with image priors can enhance the clinical utility of endomicroscopy whereas existing SR algorithms suffer from the lack of explicit guidance from ground truth high-resolution (HR) images. In this article, we propose an unsupervised SR pipeline to allow stable offline and kernel-generic learning. Our method takes advantage of both internal statistics and external cross-modality priors. To improve the joint learning process, we present a Sharpness-aware Contrastive Generative Adversarial Network (SCGAN) with two dedicated modules, a sharpness-aware generator and a contrastive-learning discriminator. In the generator, an auxiliary task of sharpness discrimination is formulated to facilitate internal learning by considering the rankings of training instances in various sharpness levels. In the discriminator, we design a contrastive-learning module to mitigate the ill-posed nature of SR tasks via constraints from both positive and negative images. Experiments on multiple datasets demonstrate that SCGAN reduces the performance gap between previous unsupervised approaches and the upper bounds defined in supervised settings by more than 50%, delivering a new state-of-the-art performance score for endomicroscopy super-resolution. Further application on a realistic Voronoi-based pCLE downsampling kernel proves that SCGAN attains PSNR of 35.851 dB, improving 5.23 dB compared with the traditional Delaunay interpolation.


Asunto(s)
Algoritmos , Diagnóstico por Imagen , Humanos , Procesamiento de Imagen Asistido por Computador/métodos
17.
Int J Comput Assist Radiol Surg ; 18(7): 1287-1294, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37259009

RESUMEN

PURPOSE: Endobronchial intervention requires detailed modeling of pulmonary anatomical substructure, such as lung airway and artery-vein maps, which are commonly extracted from non-contrast computed tomography (NCCT) independently using automatic segmentation approaches. We aim to make the first attempt to jointly train a CNN-based model for airway and artery-vein segmentation along with synthetic contrast-enhanced CT (CECT) generation. METHODS: A multi-task framework is proposed to simultaneously generate three segmentation maps and synthesize CECTs. We first design a collaborative learning model with tissue knowledge interaction for lung airway and artery-vein segmentation. Meanwhile, a conditional adversarial training strategy is applied to generate CECTs from NCCTs guided by artery maps. Additionally, CECT identity and reconstruction help to regularize the model for plausible NCCT to CECT translation. RESULTS: Extensive experiments were conducted to evaluate the performance of the proposed framework based on three datasets (90 NCCTs for the airway task, 55 NCCTs for the artery-vein task and 100 CECTs for the artery task). The results demonstrate the effective improvement of our proposed method compared to other methods and configurations that can achieve more accurate segmentation maps (Dice score coefficients for these three tasks are: 93.6%, 80.7% and 82.4%, respectively) and realistic CECTs simultaneously. The ablation study further verifies the effectiveness of the components of the designed model. CONCLUSION: This study demonstrates the model potential in multi-task learning that integrates anatomically relevant segmentation and performs NCCT to CECT translation. Such an interaction approach promotes mutually for both promising segmentation results and plausible synthesis.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Pulmón , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Pulmón/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Tórax , Arterias
18.
IEEE Trans Biomed Eng ; 70(6): 1786-1794, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37015473

RESUMEN

OBJECTIVE: In-vivo validation on animal setting of a pneumatically propelled robot for endovascular intervention, to determine safety and clinical advantage of robotic cannulations compared to manual operation. METHODS: Robotic assistance and image-guided intervention are increasingly used for improving endovascular procedures with enhanced navigation dexterity and accuracy. However, most platforms developed in the past decade still present inherent limitations in terms of altered clinical workflow, counterintuitive human-robot interaction, and a lack of versatility. We have created a versatile, highly integrated platform for robot-assisted endovascular intervention aimed at addressing such limitations, and here we demonstrate its clinical usability through in-vivo animal trials. A detailed in-vivo study on four porcine models conducted with our robotic platform is reported, involving cannulation and balloon angioplasty of five target arteries. RESULTS: The trials showed a 100% success rate, and post-mortem histopathological assessment demonstrated a reduction in the incidence and severity of vessel trauma with robotic navigation versus manual manipulation. CONCLUSION: In-vivo experiments demonstrated that the applicability of our robotic system within the context of this study was well tolerated, with good feasibility, and low risk profile. Comparable results were observed with robotics and manual cannulation, with clinical outcome potentially in favor of robotics. SIGNIFICANCE: This study showed that the proposed robotic platform can potentially improve the execution of endovascular procedures, paving the way for clinical translation.


Asunto(s)
Procedimientos Endovasculares , Procedimientos Quirúrgicos Robotizados , Robótica , Cirugía Asistida por Computador , Humanos , Animales , Porcinos , Diseño de Equipo , Procedimientos Endovasculares/efectos adversos
19.
IEEE Trans Med Imaging ; 42(9): 2631-2642, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37030683

RESUMEN

Magnetic Resonance Elastography (MRE) can characterize biomechanical properties of soft tissue for disease diagnosis and treatment planning. However, complicated wavefields acquired from MRE coupled with noise pose challenges for accurate displacement extraction and modulus estimation. Using optimization-based displacement extraction and Traveling Wave Expansion-based Neural Network (TWENN) modulus estimation, we propose a new pipeline for processing MRE images. An objective function with Dual Data Consistency (Dual-DC) has been used to ensure accurate phase unwrapping and displacement extraction. For the estimation of complex wavenumbers, a complex-valued neural network with displacement covariance as an input has been developed. A model of traveling wave expansion is used to generate training datasets for the network with varying levels of noise. The complex shear modulus map is obtained through fusion of multifrequency and multidirectional data. Validation using brain and liver simulation images demonstrates the practical value of the proposed pipeline, which can estimate the biomechanical properties with minimal root-mean-square errors when compared to state-of-the-art methods. Applications of the proposed method for processing MRE images of phantom, brain, and liver reveal clear anatomical features, robustness to noise, and good generalizability of the pipeline.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Diagnóstico por Imagen de Elasticidad/métodos , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Hígado/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
20.
Small ; 19(22): e2300469, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36855777

RESUMEN

Microactuators can autonomously convert external energy into specific mechanical motions. With the feature sizes varying from the micrometer to millimeter scale, microactuators offer many operation and control possibilities for miniaturized devices. In recent years, advanced microfluidic techniques have revolutionized the fabrication, actuation, and functionalization of microactuators. Microfluidics can not only facilitate fabrication with continuously changing materials but also deliver various signals to stimulate the microactuators as desired, and consequently improve microfluidic chips with multiple functions. Herein, this cross-field that systematically correlates microactuator properties and microfluidic functions is comprehensively reviewed. The fabrication strategies are classified into two types according to the flow state of the microfluids: stop-flow and continuous-flow prototyping. The working mechanism of microactuators in microfluidic chips is discussed in detail. Finally, the applications of microactuator-enriched functional chips, which include tunable imaging devices, micromanipulation tools, micromotors, and microsensors, are summarized. The existing challenges and future perspectives are also discussed. It is believed that with the rapid progress of this cutting-edge field, intelligent microsystems may realize high-throughput manipulation, characterization, and analysis of tiny objects and find broad applications in various fields, such as tissue engineering, micro/nanorobotics, and analytical devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA